
1 Anti-Wallhack Visibility System

1.1 Overview
Anti-Wallhack Visibility System is a Unity-based server-side solution designed to prevent
wallhacks and unauthorized player detection in competitive or multiplayer games. It
validates whether a player truly has line-of-sight to another using precise linecast checks
and directional sampling, ensuring that visibility is based on legitimate rendering logic
not client-side manipulation.

This asset is ideal for developers building secure PvP environments, tactical shooters,
stealth games, or any scenario where visibility must be verified independently of the
client. It runs entirely on the server or host, making it resistant to cheating and spoofed
rendering.

1.1.1 Core Purpose

• Prevents wallhacks by validating visibility through geometry

• Ensures that visibility logic is server-authoritative

• Uses safe rendering logic based on face-aligned normals and line sampling

1.1.2 What It Offers

• Observer-based visibility sampling

• Dynamic line generation per face

• Field-of-view validation with aspect ratio and pitch control

• Real-time visibility events per observer/player pair

• Editor tools for debugging visibility in play mode

• UnityEvent integration for easy event handling in the Editor

1.2 Features
• Server-Side Visibility Validation

• Anti-Wallhack Detection

• Observer-Based Sampling

• Field of View Configuration

• Dynamic Line Generation

• Real-Time Visibility Events

• UnityEvent Integration for Visibility Events

• Editor Debug Tools

• Modular Architecture

• Multiplayer-Ready

1

1.3 Setup Guide
1.3.1 1. Add the ObserverManager

• Create an empty GameObject in your scene and name it ObserverManager.

• Attach the ObserverManager component.

• This component manages all observers and players in the visibility system.

• Note: The ObserverManager uses [DefaultExecutionOrder(-200)] to ensure it
initializes early in the Unity update cycle, before other components like PlayerObserver
and PlayerVisibilityDetector.

1.3.2 2. Add PlayerObserver to Observers

Attach the PlayerObserver component to a GameObject representing the player’s cam-
era (e.g., camera, AI, or player entity). This GameObject must track the position and
rotation of the player’s camera.

Hierarchy Recommendations:

• If the camera is fixed relative to the player, attach PlayerObserver to a child
GameObject of the player (e.g., under the same parent as the PlayerVisibilityDetector).

• Ensure the GameObject’s rotation is updated to match the camera’s orientation.
If the camera moves independently, the PlayerObserver GameObject must follow
its position and rotation.

Configuration:

• cameraFOVAngle: Set the vertical field of view angle (e.g., 60 degrees).

• viewDistance: Define the maximum detection distance (e.g., 30 meters).

• aspectRatio: Set the aspect ratio for horizontal FOV calculation (e.g., 16:9).

• showGizmos: Enable to visualize the FOV cone in the Scene view (green when a
player is visible, red when not).

[SerializeField] private float cameraFOVAngle = 60f;
[SerializeField] private float viewDistance = 30f;
[SerializeField] private Vector2 aspectRatio = new (16f, 9f);
[SerializeField] private bool showGizmos = true;

1.3.3 3. Add PlayerVisibilityDetector to Players

Attach PlayerVisibilityDetector to each player or target to be detected, preferably
at the root of the player GameObject.

Important: A BoxCollider (playerBox) is required to calculate face-aligned normals
and generate sampling lines. Ensure the BoxCollider is attached to a child GameOb-
ject of the GameObject containing the PlayerVisibilityDetector.
[SerializeField] private BoxCollider playerBox ;

Collider Setup Recommendations:

2

• Hierarchy: Place the BoxCollider on a child GameObject of the player to ensure
proper transform calculations.

• Size Considerations:

– Larger colliders may cause early detection around corners.

– Smaller colliders may delay visibility and risk wallhack exposure.

– Tune size based on level design and desired detection timing.

Layer Configuration for Obstacles:

• Assign obstacles (e.g., walls, objects) to a specific layer, such as Obstacles.

• Configure the obstaclesMask field in PlayerVisibilityDetector to include these
layers to ensure accurate visibility checks.

[SerializeField] private LayerMask obstaclesMask ;

1.3.4 4. Add VisibilityUnityEventRelay (Optional)

To handle visibility events directly in the Unity Editor without scripting, attach the
VisibilityUnityEventRelay component to the same GameObject as the PlayerVisibilityDetector.

• Configure the onVisibilityChanged UnityEvent in the Inspector to trigger actions
when visibility changes (e.g., enabling/disabling UI, playing animations).

• Ensure the PlayerVisibilityDetector component is present, as it is required by
VisibilityUnityEventRelay.

[SerializeField] private UnityEvent <bool > onVisibilityChanged ;

1.3.5 5. Connect Components

• PlayerObserver, PlayerVisibilityDetector, and VisibilityUnityEventRelay
auto-register with ObserverManager at runtime.

1.3.6 6. Enable Gizmos for Debugging

• In Scene view, enable Gizmos to visualize:

– Observer FOV cones (green when a player is visible, red when not)

– Face normals

– Linecast paths (fixed and dynamic lines)

1.3.7 7. Listen to Visibility Events (Optional)

You can handle visibility changes in two ways:

Option 1: Using VisibilityUnityEventRelay (Recommended for Editor) Con-
figure the onVisibilityChanged UnityEvent in the Inspector to trigger actions when a
player becomes visible or invisible.

3

Option 2: Manual Subscription (Advanced) Subscribe to visibility changes pro-
grammatically:
observerManager . OnVisibilityChanged += (observerId , player ,

isVisible) =>
{

if (isVisible)
Debug .Log($" Player { player .name} is now visible to

Observer { observerId }");
else

Debug.Log($" Player { player .name} is no longer visible to
Observer { observerId }");

};

1.4 Component Breakdown
1.4.1 ObserverManager

• Manages registration and unregistration of observers and players.

• Tracks visibility states and dispatches OnVisibilityChanged events.

• Reuses observer IDs for efficiency.

• Uses [DefaultExecutionOrder(-200)] to ensure early initialization in the Unity
update cycle, allowing dependent components to rely on it.

Key Fields:

• Instance: Singleton instance for global access.

• OnVisibilityChanged: Event triggered when a player’s visibility changes for an
observer.

Key Methods:

• RegisterObserver(PlayerObserver observer): Assigns a unique ID to an ob-
server.

• RegisterPlayer(PlayerVisibilityDetector player): Adds a player to the vis-
ibility tracking system.

• UnregisterPlayer(PlayerVisibilityDetector player): Removes a player from
tracking.

• UnregisterObserver(int observerId): Removes an observer and recycles its ID.

• ChangeVisibility(int observerId, PlayerVisibilityDetector player, bool
state): Updates visibility state and triggers events.

• IsPlayerVisibleToObserver(int observerId, PlayerVisibilityDetector player):
Checks if a player is visible to an observer.

• GetAllPlayersExcept(PlayerVisibilityDetector exclude): Returns all regis-
tered players except the specified one.

• GetAllObserverIds(): Returns all active observer IDs.

4

• GetObserver(int id): Retrieves an observer by ID.

• IsValidObserver(int id): Verifies if an observer ID is valid.

1.4.2 PlayerObserver

• Represents the player’s camera, tracking its position and rotation for visibility
checks.

• Defines FOV parameters and performs visibility checks based on distance, horizon-
tal, and vertical angles.

• Subscribes to events and provides optional Gizmo visualization (FOV cone).

Key Fields:

• myPlayer: Reference to the associated PlayerVisibilityDetector (automatically
fetched from parent if not set).

• cameraFOVAngle: Vertical field of view angle.

• viewDistance: Maximum detection distance.

• aspectRatio: Aspect ratio for horizontal FOV calculation.

• showGizmos: Enables visualization of the FOV cone (green for visible, red for not
visible).

Key Methods:

• DetectVisiblePlayersByFOV(): Checks which players are within the FOV and
distance.

• HandleVisibility(...): Handles visibility events for debugging.

Hierarchy Note: Place the PlayerObserver on a GameObject that matches the player’s
camera position and rotation. If the camera is fixed, it can be a child of the player
GameObject, with only the rotation updated to match the camera.

1.4.3 PlayerVisibilityDetector

• Calculates face normals

• Performs linecasts (fixed and dynamic lines)

• Tracks visibility per observer

• Notifies ObserverManager

Key Fields:

• playerBox: Reference to the BoxCollider (must be on a child GameObject).

• obstaclesMask: Layer mask for obstacles that block visibility (e.g., walls, objects).

• dynamicLineSpeed: Controls the speed of dynamic line movement for visibility
sampling. Higher speeds improve detection accuracy but may impact performance.

5

• verticalFixedLineCount, horizontalFixedLineCount: Number of fixed lines for
visibility sampling.

• verticalDynamicLineCount, horizontalDynamicLineCount: Number of dynamic
lines for visibility sampling.

• dynamicLineSpacing: Spacing between dynamic lines.

• horizontalColumnCount, verticalRowCount: Number of columns and rows for
line sampling.

• alignmentThreshold, targetAlignmentThreshold: Thresholds for face normal
alignment.

• showGizmos, dynamicLineColor, fixedLineColor, detectedLineColor, faceLineColor,
boxColor: Gizmo visualization settings.

Key Methods:

• UpdateVisibilityFromAlignedNormals()

• AddObserver(...)

• RemoveObserver(...)

Important Adaptation Note for Networking (e.g., Photon Fusion): The default
Update() method calls UpdateVisibilityFromAlignedNormals() every frame, which
works for single-player or non-networked scenarios. For multiplayer frameworks like Pho-
ton Fusion, replace this with a call in FixedUpdateNetwork() (not Render()) to ensure
deterministic simulation, client-side prediction, and resimulation support. This is crucial
for linecast-based checks, as they depend on fixed-tick physics and networked state.

Example for Photon Fusion (Host Mode):
public class PlayerVisibilityDetector : NetworkBehaviour
{

public override void FixedUpdateNetwork ()
{

if (Object . HasStateAuthority)
{

UpdateVisibilityFromAlignedNormals ();
}

}
}

• Why FixedUpdateNetwork()? It runs at fixed ticks (e.g., 60Hz), integrates
with Fusion’s simulation loop, and supports rollbacks for accurate multiplayer sync.
Avoid Render() for logicuse it only for visual interpolation.

• Benefits: Reduces desyncs, improves performance, and maintains server authority.

1.4.4 VisibilityUnityEventRelay

• Relays visibility events from ObserverManager to a UnityEvent for easy configu-
ration in the Unity Editor.

6

• Requires a PlayerVisibilityDetector on the same GameObject.

Key Fields:

• onVisibilityChanged: A UnityEvent<bool> that triggers when the player’s visi-
bility changes, passing true (visible) or false (invisible).

Key Methods:

• HandleVisibilityChanged(int observerId, PlayerVisibilityDetector detector,
bool isVisible): Filters and forwards visibility events for the attached PlayerVisibilityDetector.

1.4.5 ObserverManagerEditor

• Custom inspector for debugging

• Shows observer/player lists

• Displays visibility status

• Editor-only, no runtime impact

1.5 How Visibility Works
1.5.1 Core Concepts

• Field of View (FOV): Defines detection cone, calculated using cameraFOVAngle
and aspectRatio.

• Face-Aligned Normals: Sample directions from bounding box.

• Line Sampling: Grid of vertical/horizontal lines per face, including fixed and
dynamic lines.

• Linecast Validation: Physics checks for unobstructed paths.

• Dynamic Line Speed: Controls how fast dynamic lines move, impacting detection
accuracy and performance.

• Visibility Events: Triggered on visibility state changes, accessible via ObserverManager
or VisibilityUnityEventRelay.

1.5.2 Example Flow

1. PlayerObserver detects players in its FOV based on cameraFOVAngle, viewDistance,
and aspectRatio.

2. System calculates normals and sampling lines (fixed and dynamic).

3. Linecasts are performed for both fixed and dynamic lines.

4. If any line reaches the target, visibility is confirmed.

5. ObserverManager updates state and triggers events via OnVisibilityChanged or
VisibilityUnityEventRelay.

7

1.6 Customization
1.6.1 Field of View Settings

• cameraFOVAngle, viewDistance, aspectRatio: Adjust to match the player’s cam-
era settings.

• Ensure aspectRatio reflects the camera’s aspect ratio for accurate horizontal FOV
calculation.

1.6.2 Line Sampling Resolution

• fixedLineCount, dynamicLineCount, samplingMode

• Dynamic Line Speed (dynamicLineSpeed): Controls the speed of dynamic line
movement. Higher values improve detection accuracy by scanning faster but may
increase performance cost. In some cases, high speeds may reduce the need for
fixed lines, allowing users to disable them by setting verticalFixedLineCount
and horizontalFixedLineCount to 0.

1.6.3 Obstacle Layer Configuration

• Set obstaclesMask to include layers for objects that should block visibility (e.g.,
Obstacles layer). Ensure all relevant scene objects are assigned to these layers to
prevent false positives in visibility checks.

1.6.4 Event Handling

• Using VisibilityUnityEventRelay (Recommended): Configure the onVisibilityChanged
UnityEvent in the Inspector to trigger actions like UI updates, animations, or sound
effects without writing code.

• Manual Subscription: Use ObserverManager.OnVisibilityChanged for custom
logic in scripts.

1.6.5 Gizmo Visualization

• Toggle showGizmos per observer

• Visualize normals, cones, fixed/dynamic linecasts, and detected lines with customiz-
able colors (dynamicLineColor, fixedLineColor, detectedLineColor, faceLineColor,
boxColor).

• PlayerObserver shows the FOV cone (green for visible, red for not visible).

1.6.6 Performance Optimization

• Adjust dynamicLineSpeed for a balance between accuracy and performance

• Lower line counts (verticalFixedLineCount, horizontalFixedLineCount, verticalDynamicLineCount,
horizontalDynamicLineCount) for distant targets

• Use update intervals

• Disable gizmos in builds

8

• Apply layer masks (obstaclesMask) to limit linecast checks

• For Networking (e.g., Photon Fusion): Move calls to FixedUpdateNetwork()
for fixed-tick execution, reducing overhead and ensuring sync. Avoid Update() in
networked builds to prevent desyncs.

• Pool data and profile performance

1.7 Editor Tools
1.7.1 Gizmo Visualization

• Face normals

• Fixed and dynamic sampling lines

• Detection cone (green for visible, red for not visible)

• Visibility status (with distinct colors for fixed, dynamic, and detected lines)

1.7.2 ObserverManager Editor

• Observer/player lists

• Visibility status

• Debug controls

1.8 Performance Tips
1. Tune dynamicLineSpeed to balance detection accuracy and performance

2. Adjust line resolution (verticalFixedLineCount, horizontalFixedLineCount,
verticalDynamicLineCount, horizontalDynamicLineCount)

3. Limit detection frequency

4. Disable gizmos in production

5. Use obstaclesMask to filter relevant layers

6. Pool and reuse data

7. Profile and scale

1.9 Extensibility
1.9.1 AI Integration

• Trigger AI behaviors via VisibilityUnityEventRelay or OnVisibilityChanged

• Combine with pathfinding

• Filter by team/threat/distance

9

1.9.2 Multiplayer Compatibility

Works with:

• Photon Fusion

• Photon PUN

• Mirror

• Netcode for GameObjects

• Fish-Networking

Server-side logic ensures secure detection. Sync visibility states across clients. Photon
Fusion Specific: For best results, inherit components from NetworkBehaviour and call
visibility methods (e.g., UpdateVisibilityFromAlignedNormals()) in FixedUpdateNetwork()
on the host. This aligns with Fusion’s tick-based simulation for deterministic linecasts and
avoids desyncs. See the adaptation note in PlayerVisibilityDetector for an example.

1.9.3 UI and Gameplay Integration

• Use VisibilityUnityEventRelay to show/hide indicators, trigger animations, or
play sounds

• Log visibility changes for analytics

1.10 Demo Scene Setup
The asset includes a demo scene to help users test the visibility system. The following
scripts are included to facilitate interaction and testing but are not part of the core
functionality:

1.10.1 TimeController

• Purpose: Adjusts the game’s time scale (Time.timeScale) to test the visibility
system at different speeds, useful for evaluating dynamicLineSpeed behavior.

• Usage: Press Up Arrow to increase or Down Arrow to decrease the time scale.
The current value is displayed via a UI Text component.

• Configuration: Assign a Text component to the timeScale field in the Inspector.
Adjust incrementSpeed to control how quickly the time scale changes.

[SerializeField] private Text timeScale ;
[SerializeField] private float incrementSpeed = 2;

1.10.2 PlayerSwitcher

• Purpose: Allows switching between multiple players in the demo scene to test
visibility from different perspectives.

• Usage: Press Right Arrow to switch to the next player or Left Arrow to switch
to the previous player. The camera follows the active player’s PlayerObserver.

10

• Configuration: Assign an array of SimplePlayerController components to the
players field and the camera’s Transform to the cam field. Each player must have
a PlayerObserver assigned to its observer field.

[SerializeField] private SimplePlayerController [] players ;
[SerializeField] private Transform cam;

1.10.3 SimplePlayerController

• Purpose: Provides basic movement and rotation controls for players in the demo
scene.

• Usage: Use WASD keys for movement (forward, backward, right, left) and Q/E
keys for rotation. The observer field links to the GameObject with the PlayerObserver.

• Configuration: Assign the PlayerObserver GameObject to the observer field.
Adjust moveSpeed and rotationSpeed for desired control responsiveness.

[SerializeField] private float moveSpeed = 5f;
[SerializeField] private float rotationSpeed = 100f;
[SerializeField] public Transform observer ;

Note: These scripts are included in the demo scene to help users explore the visibility
system. They are not required for the asset’s core functionality and can be replaced with
custom player controllers or camera systems in your project.

1.11 Troubleshooting
1.11.1 Players not detected

Possible Causes:

• FOV angle or view distance too low

• Aspect ratio incorrect

• Sampling lines blocked by incorrect obstaclesMask configuration

• Layer masks excluding target

• playerBox not properly set as a child GameObject

• Insufficient dynamicLineSpeed for fast-moving targets

• PlayerObserver GameObject not aligned with the camera’s position/rotation

Solutions:

• Increase FOV (cameraFOVAngle) and distance (viewDistance)

• Set correct aspectRatio to match the camera

• Verify obstaclesMask includes relevant layers (e.g., Obstacles)

• Check layer masks for targets

• Ensure playerBox is a child of the GameObject with PlayerVisibilityDetector

11

• Increase dynamicLineSpeed for better detection of fast-moving targets

• Ensure the PlayerObserver GameObject tracks the camera’s position and rotation

1.11.2 Events not firing

Possible Causes:

• ObserverManager missing or inactive

• Registration failed

• Visibility state not changing due to low dynamicLineSpeed

• VisibilityUnityEventRelay not properly configured or missing PlayerVisibilityDetector

• PlayerObserver not registered due to incorrect hierarchy

• Other scripts executing before ObserverManager due to custom execution order

Solutions:

• Ensure ObserverManager is active and initialized early ([DefaultExecutionOrder(-200)]
ensures this)

• Confirm registration of PlayerVisibilityDetector, PlayerObserver, and VisibilityUnityEventRelay

• Increase dynamicLineSpeed to improve detection responsiveness

• Verify that VisibilityUnityEventRelay is attached to the same GameObject as
PlayerVisibilityDetector and that onVisibilityChanged is configured

• Ensure PlayerObserver is a child of the player (if camera is fixed) or tracks the
camera’s transform

• Check script execution order in Unity to ensure ObserverManager runs before de-
pendent scripts

• Use debug logs to track event triggers

1.11.3 Gizmos not showing

Possible Causes:

• Gizmos disabled

• Scene view not focused

• showGizmos is false

• PlayerObserver not properly aligned with the camera

Solutions:

• Enable Gizmos in toolbar

• Set showGizmos = true

• Focus Scene view

• Verify PlayerObserver GameObject matches the camera’s position and rotation

12

1.12 Final Notes
The system is modular, extensible, and built for real-world use. Whether you’re building
a tactical shooter, stealth game, or competitive PvP experience, it gives you the tools to
control visibility with precision and security.

1.12.1 Best Practices

• Run checks on server/host

• Tune dynamicLineSpeed and line counts for performance

• Use VisibilityUnityEventRelay for easy event handling in the Editor

• Use events for gameplay

• Combine with networking frameworks

• Use gizmos during development

• Ensure playerBox is a child of the GameObject with PlayerVisibilityDetector

• Configure obstaclesMask to include relevant obstacle layers

• Place PlayerObserver on a GameObject that tracks the player’s camera position
and rotation

• Rely on ObserverManager’s early initialization ([DefaultExecutionOrder(-200)])
for stable setup

1.13 FAQ
Does this system work with Photon Fusion or PUN 2? Yes. Fully compatible
with both. Visibility logic runs on server/host and syncs across clients.

Can I use this for AI agents? Yes. Observers can represent AI entities, and
VisibilityUnityEventRelay can trigger AI behaviors.

Is it compatible with URP or HDRP? Yes. Rendering-independent. Uses physics
and geometry.

Does it support mobile platforms? Yes. Optimize dynamicLineSpeed and line
counts for performance.

Can I use this in single-player games? Definitely. Useful for AI, stealth, and scripted
events via VisibilityUnityEventRelay.

Does it require a specific collider type? No. Works with BoxCollider, CapsuleCollider,
MeshCollider. Ensure the collider is a child of the GameObject with PlayerVisibilityDetector.

Can I customize the visibility logic? Yes. Modular and extensible. Override sam-
pling, add filters, or use VisibilityUnityEventRelay for easy event-driven logic.

13

